Measurement of the ultra-rare K+ ! + ¯ decay at the NA62 experiment at CERN requires high-performance particle identification to distinguish muons from pions. Calorimetric identification currently in use, based on a boosted decision tree algorithm, achieves a muon misidentification probability of 1.2×10−5 for a pion identification efficiency of 75% in the momentum range of 15–40 GeV/c. In this work, calorimetric identification performance is improved by developing an algorithm based on a convolutional neural network classifier augmented by a filter. Muon misidentification probability is reduced by a factor of six with respect to the current value for a fixed pion-identification efficiency of 75%. Alternatively, pion identification efficiency is improved from 72% to 91% for a fixed muon misidentification probability of 10−5.
Improved calorimetric particle identification in NA62 using machine learning techniques / Cortina Gil, E.; Kleimenova, A.; Minucci, E.; Padolski, S.; Petrov, P.; Shaikhiev, A.; Volpe, R.; Fedorko, W.; Numao, T.; Petrov, Y.; Velghe, B.; Wong, V. W. S.; Yu, M.; Bryman, D.; Fu, J.; Hives, Z.; Husek, T.; Jerhot, J.; Kampf, K.; Zamkovsky, M.; De Martino, B.; Perrin-Terrin, M.; Akmete, A. T.; Aliberti, R.; Khoriauli, G.; Kunze, J.; Lomidze, D.; Peruzzo, L.; Vormstein, M.; Wanke, R.; Dalpiaz, P.; Fiorini, M.; Mazzolari, A.; Neri, I.; Norton, A.; Petrucci, F.; Soldani, M.; Wahl, H.; Bandiera, L.; Cotta Ramusino, A.; Gianoli, A.; Romagnoni, M.; Sytov, A.; Iacopini, E.; Latino, G.; Lenti, M.; Lo Chiatto, P.; Panichi, I.; Parenti, A.; Bizzeti, A.; Bucci, F.; Antonelli, A.; Georgiev, G.; Kozhuharov, V.; Lanfranchi, G.; Martellotti, S.; Moulson, M.; Spadaro, T.; Tinti, G.; Ambrosino, F.; Capussela, T.; Corvino, M.; D’Errico, M.; Di Filippo, D.; Fiorenza, R.; Giordano, R.; Massarotti, P.; Mirra, M.; Napolitano, M.; Rosa, I.; Saracino, G.; Anzivino, G.; Brizioli, F.; Imbergamo, E.; Lollini, R.; Piandani, R.; Santoni, C.; Barbanera, M.; Cenci, P.; Checcucci, B.; Lubrano, P.; Lupi, M.; Pepe, M.; Piccini, M.; Costantini, F.; Di Lella, L.; Doble, N.; Giorgi, M.; Giudici, S.; Lamanna, G.; Lari, E.; Pedreschi, E.; Sozzi, M.; Cerri, C.; Fantechi, R.; Pontisso, L.; Spinella, F.; Mannelli, I.; D’Agostini, G.; Raggi, M.. - In: JOURNAL OF HIGH ENERGY PHYSICS. - ISSN 1029-8479. - 2023:11(2023), pp. 1-14. [10.1007/JHEP11(2023)138]
Improved calorimetric particle identification in NA62 using machine learning techniques
Kozhuharov V.;D’Agostini G.;Raggi M.
2023
Abstract
Measurement of the ultra-rare K+ ! + ¯ decay at the NA62 experiment at CERN requires high-performance particle identification to distinguish muons from pions. Calorimetric identification currently in use, based on a boosted decision tree algorithm, achieves a muon misidentification probability of 1.2×10−5 for a pion identification efficiency of 75% in the momentum range of 15–40 GeV/c. In this work, calorimetric identification performance is improved by developing an algorithm based on a convolutional neural network classifier augmented by a filter. Muon misidentification probability is reduced by a factor of six with respect to the current value for a fixed pion-identification efficiency of 75%. Alternatively, pion identification efficiency is improved from 72% to 91% for a fixed muon misidentification probability of 10−5.File | Dimensione | Formato | |
---|---|---|---|
CortinaGil_Improved-calorimetric-particle_2023.pdf
accesso aperto
Note: Articolo su rivista
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
504.24 kB
Formato
Adobe PDF
|
504.24 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.